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Abstract. We report results of the Stark broadening calculations for Sr+ and Ba+ resonance lines in ultra-
cold plasmas using semiempirical formulas and numerical computer simulation technique. The simulation
results show that strong collisions dominate Stark broadening at very low electron temperatures and weak
collision approximation used recently by Vrinceanu et al. cannot be applied in this temperature region.
Consequently, the temperature trend of Stark widths and shifts changes from 1/

√
T successfully used at

elevated temperatures to an increasing trend with temperature, which is characteristic for strong collisions
at low temperature.

PACS. 32.70.Jz Line shapes, widths, and shifts – 52.70.Kz Optical (ultraviolet, visible, infrared)
measurements – 52.65.Yy Molecular dynamics methods

1 Introduction

Recently, Vrinceanu et al. [1] have reported results of
the electron-impact Stark width and shift calculations for
the 421.5 nm Sr+ resonance line in an ultracold neu-
tral plasma. For this purpose the authors [1] used the
electron-impact model that follows the one developed by
Baranger [2]. This model [2], with several approximations
was used successfully at elevated electron temperatures for
numerous calculations of the Stark broadening parameters
of non-hydrogenic atomic and singly charged ion lines, see
e.g. [3]. The authors [1] calculated first the broadening and
shift cross-section data in a temperature range 10–200 K,
see Figure 1 in [1], and then they used these results to
evaluate Stark widths and shifts for the same temperature
range and for the electron density Ne = 1016 m−3. Both,
the cross-section data and consequently Stark broaden-
ing parameters, show 1/

√
T dependence, see Figures 1

and 2 [1], which suggests very large plasma broadening
and shifting of Sr+ resonance lines at T < 10 K.

In order to test the possibility of using electron colli-
sion models [1,2] for the evaluation of Stark broadening
parameters at very low electron temperatures and, in this
way, to test their temperature trend, a numerical com-
puter simulation experiment is performed. This approach
is also based on a collision model, but in addition to elec-
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trons the ion collisions contribution is estimated as well.
The basic difference between the two sets of calculations:
the computer simulation method is free from numerous
approximations involved in the models described in [1,2].

Let us draw attention to some approximations involved
in collision model [2]. As can be seen in [2]: “the first is
that the perturbers do not interact with each other. Each
perturber interacts only with the atom, and is otherwise
uncorrelated with the motion of the other perturbers. If
we are talking about charged perturbers, this is true only
of those that are inside the Debye radius, and we may
have to introduce later a correction to take into account
the mutual screening of the perturbers” [2]. In this sense,
the physical model employed in the calculations [1] and
the one used in computer simulations here are identi-
cal: perturbers are independent particles that move along
straight line trajectories with constant speed according to
a Maxwellian velocity distribution corresponding to the
temperature of thermal equilibrium. The correlation be-
tween charges is taken into account approximately using
Debye screened fields. These basic assumptions of the col-
lision model are used in [1,2] and in the computer simula-
tion presented here. The difference between the two sets of
calculations comes from the different mathematical treat-
ment of these approximations. The calculation in refer-
ence [1] uses the so called “impact approximation”, which
is a mathematical approximation. The simulation, how-
ever, does not use those approximations, and the evolution
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differential equations are fully integrated. In the analyt-
ical calculation [1,2] the Born approximation is used for
the development of evolution operator (only the dominant
term of the perturbative development of the time evolu-
tion operator is taken into account), while in the simula-
tion the differential equations giving the emitter evolution
are fully integrated. Further, the analytical development
assumes that the collisions do not overlap in time, while
in the simulation this must appear in a natural way. It
must be remembered that the simulation does not con-
sider “collisions”, but it uses the electric field due to the
complete set of perturbers. In most time of the simulation,
there is not a particle, whose electric field clearly domi-
nates. Only occasionally one particle passes very close to
the emitter, and, in those cases, the other particles elec-
tric field could be neglected. As will be seen later, these
interactions, though very rare, will determine the shift and
broadening of the spectral lines studied here. Then, differ-
ences between the results of both treatments are not due
to differences in the emitter or plasma physical model, but
of the mathematical treatment of the interaction between
both. To be exact, in the problem considered here, the
consideration that have a larger influence on the results is
the use of Born approximation: in the usual treatment the
phase changes due to the collisions are linear with the in-
tensity of the perturbation; in the simulation this linearity
does not appear when we are dealing with close collisions.

In addition, the modified semiempirical formulas [4,5]
are also used for the evaluation of Sr+ Stark widths and
shifts in a broad temperature range including very low
temperatures. These formulas basically use the same the-
oretical approach [1,2] and the Stark broadening parame-
ters temperature dependence is expected to show the same
trend as shown in Figure 2 of reference [1].

All our results for the Sr+ line are compared with those
of reference [1] and other experimental data at elevated
electron temperatures. In addition the results for the Ba+

493.4 nm resonance line are reported and discussed.

2 Numerical treatment in the simulation

The dipolar emission profile is obtained with the Fourier
transform of the emitter dipole moment autocorrelation
function [6]:

I(ω) =
1
π

∫ ∞

0

dt cos(ωt) {C(t)} , (1)

C(t) = tr [D(t) ·D(0)] , (2)
D(t) = U+(t)D(0)U(t), (3)

where D is the dipole moment of the transition under
study — normalized so that C(0) = 1 — and U(t) is
the time evolution operator of the system, that obeys the
Schrödinger equation:

i�
d
dt

U(t) = [H0 + qE(t) · R]U(t). (4)

H0 is the unperturbed emitter Hamiltonian, E(t) is the
electric field sequence undergone by the emitter, and qR

is its dipole moment. In our calculations we have not con-
sidered the no-quenching approximation, so that operator
R and D are proportional.

In a computer simulation the perturbers — ions and
electrons — behaviour is reproduced numerically, and the
electric microfield E at the emitter position is calculated.
Once this field is evaluated, the equations (4) are solved
numerically and by using equation (3) the evolution of
dipole moment is obtained. This calculation is repeated
a large number of times with a representative set of mi-
crofield temporal sequences. In expression (1) symbols { }
mean an average of emitters in the plasma, what in our
case means an average of the emitter dipole autocorrela-
tion functions, each of them obtained from a sequence of
the perturber microfield E(t). The details how particles
are generated in the simulation, including the reinjection
technique are described in reference [7].

The correlations between charged particles will be ap-
proximated here as in [7,8], using a plasma model of
non interacting particles, under thermal equilibrium, with
Debye screened fields. For some of the conditions consid-
ered in the simulation (low temperature and high density)
the plasma coupling parameter is a large number char-
acteristic for non ideal plasma. In these cases it would
be necessary to perform a study of the interactions be-
tween particles using a molecular dynamics simulation
technique. Since the aim of this work was not to provide
quantitative data for comparison with experimental re-
sults, but to study the influence of temperature within
the frame of the physical model used in [1] (independent
particles with a screening correction to emulate the cor-
relations), then in order to take into account correlations
in the simulations only a screening correction for inde-
pendent particles is used. In this sense, strongly coupled
plasma cases may be considered as an extrapolation. In
fact, when one takes into account the correlation between
particles the collisions efficiency is reduced and the values
of width and shift decrease as well [8]. This effect will con-
tribute to the decrease of width and shift with decreasing
temperature.

In the computer simulation, the perturbers movement
and the emitter evolution are carried on with discrete time
steps ∆t. These steps are chosen so that the electric field
E(t) may be considered static for the time duration of
the step. In this case, the solution of the differential equa-
tion (4) is:

U(t + ∆t) = M(t + ∆t, t)U(t)

� exp
[
− i

�
(H0 + qE(t) · R)∆t

]
U(t).

(5)

To calculate this exponential, it is necessary to obtain
the eigenvalues and the eigenvectors of the Hamiltonian.
Therefore, it is convenient to rewrite that Hamiltonian in
the following way

H(t) = R−1(θ, ϕ) [H0 + qE(t)Rz ]R(θ, ϕ) (6)

where
R(θ, ϕ) = e−iJyθe−iJzϕ (7)
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is the rotation matrix that turns the operator E(t) ·R to
E(t)Rz . Angles θ(t) and ϕ(t) are the electric field vector
polar angles, while E(t) is its module:

E = (E sin θ cosϕ, E sin θ sin ϕ, E cos θ). (8)

The numerical process to be programmed is the diagonal-
ization of the matrix that appears in equation (6), with the
electric field oriented always along the Z-axis. We use the
standard spherical basis |n, l, j, mj〉, where the matrix H0

is diagonal and the matrix Rz, with all real elements, con-
nects only states with the same value of mj. We can then
organize the calculation with boxes having fixed value of
mj . The Hamiltonian is then prepared as a matrix with
six diagonal boxes, each one belonging to one of the values
mj = ±5/2, ±3/2 and ±1/2 with dimensions 1, 3 and 6,
respectively. Here is used the Jacobi method for the nu-
merical diagonalization [11], which is very convenient for
small matrixes. This method allows us to obtain simulta-
neously the eigenvalues and the matrix Q that gives the
change to diagonal shape. We now have

H0 + qE(t)Rz = QtHD(t)Q (9)

where HD is diagonal.
In standard basis |n, l, j, mj〉 the matrix Jz is diago-

nal and each element of Jy is pure imaginary, so that the
matrix R(θ, ϕ) is formed by the product of a real and a
— complex — diagonal matrix:

〈n′l′j′m′
j |R(θ, ϕ)|nljmj〉 = δj′jd

j
m′

jmj
(θ)e−imjϕ (10)

with dj
m′

jmj
(θ) = 〈j, m′|e−iJyθ|jm〉 (see notation in [12]).

For each time step one gets the numerical expression
of matrix M(t + ∆t, t) — see expression (5) — and it is
then multiplied by U(t) to go to next time step.

Once the evolution operator U(t) is obtained, the
dipole autocorrelation function must be calculated
— expressions (2) and (3) —. During the numerical cal-
culation it is convenient to extract the frequencies corre-
sponding to the energies of the unperturbed states from
the system evolution. For this purpose the evolution op-
erator may be written as

U(t) ≡ exp
[
− i

�
H0t

]
Ũ(t) (11)

with a diagonal matrix H0. In this expression, the ma-
trix Ũ(t) accounts of the “modulation” in the evolution of
the emitter states caused by the perturbations. In general
we are interested here in configurations with perturbations
that give rise to “modulations” of very low frequency in
comparison with the optical transitions frequencies. They
correspond, then, to lines with very weak Stark broaden-
ing.

With this notation, the autocorrelation function may
be written as:

C(t) = tr
[
Ũ+(t)e+ i

�
H0tDe−

i
�

H0tŨ(t) ·D
]

= tr
[
e+ i

�
H0tDe−

i
�

H0t · Ũ(t)DŨ+(t)
]
. (12)
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Fig. 1. Grotrian diagram for the Sr+ transitions used for the
computer simulation experiments. For each transition, wave-
length (in nm units) and transition probability (in brackets, in
108 s−1 units) are given. Wavelengths and transition probabil-
ities were taken from references [9,10].

By expressing the autocorrelation function in this way
the separation of both domains of frequencies is possible.
The matrix e+ i

�
H0tDe−

i
�

H0t takes into account the high
frequency component of the function C(t), which corre-
sponds to the frequency of the optical transitions. This
is a fixed matrix function that does not depend on the
perturber field. The other matrix, Ũ(t)DŨ+(t), takes ac-
count of the — low frequency — modulations induced by
the perturbations. It is convenient to follow this frequency
separation in the computer, so that numerical errors can
be reduced as much as possible.

The energy states connected through matrixes D are
shown in Figure 1. The elements of these matrixes are
functions with the shape Dije

iωijt. In the system under
study seven transitions, see Figure 1, are taken into ac-
count, so one can write

e+ i
�

H0tDe−
i
�

H0t ≡
7∑

k=1

[
eiωktDk + e−iωktD+

k

]
(13)

where Dk (or D+
k ) is the part of the matrix D that con-

nects the states whose difference in energies is �ωk (or
−�ωk). This development may be translated to the auto-
correlation function in the following way:

C(t) =
7∑

k=1

tr
[(

eiωktDk + e−iωktD+
k

) · Ũ(t)DŨ+(t)
]

=
7∑

k=1

cos(ωkt)Cc
k(t) − sin(ωkt)Cs

k(t), (14)

where

Cc
k(t) ≡ tr

[(
Dk + D+

k

) · Ũ(t)DŨ+(t)
]
, (15)

Cs
k(t) ≡ tr

[
1
i

(
Dk − D+

k

) · Ũ(t)DŨ+(t)
]

. (16)
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(Both quantities Cc
k(t) and Cs

k(t) are real numbers.) In
order to calculate the line profile the above expressions
are introduced in equation (1):

I(ω) =
7∑

k=1

1
π

∫ ∞

0

dt cos(ωt) {cos(ωkt)Cc
k(t)

− sin(ωkt)Cs
k(t)} . (17)

The development of the products

cos(ωt) cos(ωkt)

and
cos(ωt) sin(ωkt)

gives rise to terms in cos((ω − ωk)t) and cos((ω + ωk)t)
as well as sin((ω − ωk)t) and sin((ω + ωk)t). Terms in
(ω+ωk) take account of frequencies that do not appear in
the correlation functions Cc

k(t) and Cs
k(t). These are slow

varying functions in time so they can be disregarded. In
this way,

I(ω) =
7∑

k=1

1
π

∫ ∞

0

dt
[
cos((ω − ωk)t){Cc

k(t)}

+ sin((ω − ωk)t){Cs
k(t)}], (18)

corresponds to the profiles of seven possible Sr+ spectral
lines, see Figure 1.

3 Simulation results

Before we start the discussion of the results it should
be noted that a simulation at an electron density of
Ne = 1016 m−3 and T = 100 K requires a huge com-
putation time as a consequence of the very small Stark
broadening. This is the reason why the electron density
and temperature have been scaled so that our central con-
ditions (Ne = 1023 m−3, T = 21539 K) correspond to a
plasma with the same coupling parameter as the one in [1].
This extrapolation will be discussed and justified in rela-
tion to the reported results.

Figure 2b shows a typical example of the dipole au-
tocorrelation function corresponding to the electric field
sequence shown in Figure 2a. Under weak field conditions,
the correlation loss is very slow. When a strong collision
takes place the emitter dipole suddenly looses coherence
with a “step” function shape. The height of this step de-
pends upon the integral of energy transfer between the
perturber and the emitter atom. It should be noticed that
when the energy — expressed as a phase of the evolu-
tion operator — is significant, the relationship between
the perturber field and the phase step is not linear. For
very strong collisions a monotonous relationship between
the phase change and the perturbation magnitude is not
necessarily expected, i.e. this is a total coherence break-
down situation. When one considers very weak collisions,

Fig. 2. An example of calculated electric field and autocorre-
lation function: (a) a typical time sequence of the electric field
modulus; (b) the corresponding emitter dipole autocorrelation
function Cc(t). The function Cc(t) under weak collisions condi-
tions decreases very slowly. Only when a strong collision occurs
a noticeable change in the correlation function is detected. In
this example, though the electric field sequence were canceled
except around t ≈ 20t0, the correlation loss at t ≈ 40t0 would
have been the same. In this figure, and in Figure 3, t0 = r0/v0,

r0 = (4πNe/3)
−1/3, v0 =

√
2kT/me and E0 = qe/(4πε0r

2
0).

the relationship between the phase change and the pertur-
bation energy is linear and the so called impact approxi-
mation has physical meaning: non overlapping weak colli-
sions with very short duration. This approximation leads
to the width and shift dependence upon electron density
and temperature, which after simplification of some de-
tails scales the line width with Ne/

√
T [1,2]. Strong col-

lisions however establish a relationship more similar to
∼Ne

√
T . Namely, very strong collisions give rise to sudden

changes of the phase — the “steps” — whose magnitude
hardly depends on the density and the temperature. The
frequency of those collisions, however, is proportional to
Ne

√
T . When weak collisions are very weak, their effect is

masked by strong collisions, which dominate line broaden-
ing. This is exactly what is happening here for the studied
transition, see Figures 2 or 3. Therefore, we can conclude
here from the simulations results that the Sr II 421.5 nm
line Stark profile is dominated by strong collisions.

Computer simulation permits testing to what ex-
tent the strong collisions are the dominant collisions. To
achieve this goal, we performed a computer simulation in
which the electric microfield sequences were modified ac-
cording to

E′(t) =

⎧⎨
⎩

E(t) if E(t) = |E(t)| ≤ Emax,

Emax
E(t)
E(t)

if E(t) > Emax.
(19)

This means that we truncated the perturber field modu-
lus to a pre-established value Emax but we kept its ori-
entation. The results in Table 1 represent several exam-
ples obtained in these calculations. If the collisions with
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Fig. 3. Cosine and sine parts of the emitter dipole autocorrela-
tion function for the 421.5 nm Sr+ line for one of the cases con-
sidered in this work (Ne = 1023 m−3, T = 21539 K). Two typi-
cal examples are shown, each of them is obtained with only one
microfield sample, — the same field temporal sequence for the
functions Cs(t) and Cc(t) — together with the final result ob-
tained with 2700 samples. The autocorrelation functions have
the shape of step functions, with steps lengths corresponding
to the times of very strong collisions.

Table 1. Total width and shift of the 421.5 nm Sr II line
obtained in the simulation experiment with the electric field
truncated to Emax. In these calculations, only the field due to
electrons is considered (Ne = 1023 m−3, T = 21539 K). The
field E0 is the normal field strength corresponding to the stated
electron density. The last column shows (in %) the time frac-
tion when the original field has a modulus larger than Emax.

Electrons only with truncated field
Emax(E0) FWHM (GHz) shift (GHz) % collisions

∞ 103.7 69.3 0.000
100 5.00 34.0 0.096
50 1.40 23.2 0.290

electric fields larger than one hundred times the normal
field strength are eliminated, the total width is reduced to
≈5%, see Table 1. These collisions correspond only to a
0.096% of the total simulation time. The field larger than
100E0 corresponds to collisions with an impact parame-
ters lower than 0.1r0, what corresponds to 1.33 nm in the
considered example.

It is well-known, that the domain of strong collisions
may be characterized by the Weisskopf radius [13], rw,
which is defined as the distance below which the indi-
vidual collisions are able to produce a change of phase
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Fig. 4. Weisskopf radius as a function of temperature for two
electron density conditions. The value of rw has been fixed as
the impact parameter of an individual collision that gives rise
to a change equal to one in the emitter dipole autocorrelation
function. The values corresponding to the central conditions of
the simulation study and those in [1] are marked in this figure
with an additional circle. In both cases marked circles are in
a region where the dependence of the Weisskopf radius upon
temperature is much weaker than 1/

√
T . For the low density

case this situation is more clear than for the high density one.
When the Weisskopf radius decreases with a trend weaker than
1/T 1/4 the width induced by strong collisions will have growing
trend with temperature. This comes as a consequence of strong
collisions frequency, which is proportional to

√
T .

greater than π in the evolution of the emitter dipole. Us-
ing this criterion in reference [13] it is estimated that the
line broadening due to strong collisions follows a trend
proportional to Ne

√
Tr2

w. The numerical treatment em-
ployed here permits the evaluation of the Weisskopf radius
for our work conditions. In order to achieve this goal the
emitter dipole autocorrelation function was calculated for
an individual collision between an electron and an emit-
ter atom using a straight trajectory and mean square ve-
locity v0 =

√
2kT/me. We have taken as the Weisskopf

radius the impact parameter that must be chosen in such
a way that the step produced in Cc(t) is equal to one
— see exp. (15) —. This means that Cc(t) passes from
Cc(−∞) = 1 to Cc(+∞) = 0. Figure 4 shows calculated
values of the Weisskopf radius for two electron densities:
the one used here (Ne = 1023 m−3), and the lower one
used in reference [1] (Ne = 1016 m−3). It is important to
notice that low density results do not represent results of
a linear re-scaling of the high density ones. The Weisskopf
radius calculations were performed at the pointed densi-
ties and temperatures. It must be taken into account that
these calculations were done with a simulation of a single
collision, so they are affordable cases in the simulation. In
fact, they were obtained considering in the simulation time
steps much smaller than those considered in the usual sim-
ulation calculations. Both sets of results in Figure 4 show a
temperature dependence that, in the domain analysis, do
not correspond to the trend rw ∼ 1/

√
T , which would pro-

duce an increase of the spectral line width as temperature
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decreases. One has to select very high temperatures to find
a strongly decreasing trend with the temperature.

It is known that the Weisskopf radius does not depend
on electron density and it is only a parameter-indicator
when a collision is strong enough to produce a change
of phase equal to one. Thus Figure 4 shows only that at
low density (r0 is, then, larger) the Weisskopf radius is
much smaller than the mean interparticle distance. This
means that “strong collisions” are relatively less frequent.
Here we must return to Figure 2, which shows that the
only significant correlation loss for this example, is the
one induced by the peak at t ≈ 20t0. Although we would
have completely gone without the rest of the electric field,
the correlation loss would have been the same. This phe-
nomenon appears when the average collision is very weak.
It’s more, the weaker the typical collision were, the more
noticeable this effect would be. In this sense our extrapo-
lation to low density is completely justified. When density
is reduced, the ratio between the Weisskopf radius and the
mean interparticle distance becomes smaller. Then, strong
collisions are less probable, but, we want to point out that
outside the Weisskopf radius collisions have negligeable ef-
fect in comparison to those of the few strong collisions. If
one would expect that the dependence of the line width
with temperature be of the type 1/

√
T , Weisskopf radius

at low densities should recover the trend 1/
√

T at low
temperatures. This effect has not been observed in the
simulation experiments. The trend 1/

√
T of Weisskopf ra-

dius only appears for temperatures over 20 000 K. This
observation justifies, once more, the extrapolation of our
calculations at low densities.

The simulation results are shown in Figure 5 together
with corresponding data from Modified Semiempirical
Formulas [4,5], available experimental values [14–16] and
calculated ones from Figure 2 of reference [1]. Critical
evaluations and uncertainty estimation of Sr+ and Ba+

experimental data are given in references [17,18]. In any
case, the range in temperatures covered by the available
experiments as well as their uncertainty do not permit to
know experimentally the dependences of line width and
shift with temperature. For the electron density scaling
of all the data in Figures 5 to 7 the linear dependence of
the Stark width and shift is assumed. The same assump-
tion is used to scale up data from Vrinceanu et al. [1],
corresponding to an electron density of Ne = 1016 m−3.
These extrapolations are justified in both models, [1] and
in our simulations, — see Figure 6 —. Since linear de-
pendence of Stark width upon electron density is an im-
portant issue here, where data at very different electron
densities are compared, a short discussion of this subject
will be carried out. It is important to notice that in the
treatment of both, very weak and very strong collisions,
the dependence of the width upon the electron density is
linear. For the first case — very weak collisions — the
linearity appears because the perturber field correlation
is lost much earlier than the emitter dipole autocorrela-
tion, and the broadening process becomes homogeneous
in time. In the second case — very strong collisions —
the linearity appears because these collisions never over-
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broadening. Thin lines show best fit of the simulation results.
Results corresponding to the Modified Semiempirical Formulas
(MSF [4,5], dotted line) and those appearing in Figure 2 of [1]
(continuous thick line) are also shown. Thin line represents
temperature extrapolation of data [1] using 1/

√
T relation.
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Fig. 6. Full width at half maximum and line shift of the
421.5 nm Sr II line normalized to the electron density. The
simulation results show an increasing trend of both width and
shift with the electron temperature. The extrapolated results
of reference [1] in the same temperature range are also shown
in this figure.

lap in time — binary approximation is always valid —
and two consecutive collisions are statistically indepen-
dent. In both cases, the simulation results show a linear
dependence upon electron concentration for medium den-
sities while at very low densities this dependence can be
much easier proven. The proof of the Stark broadening
parameters linear dependence upon electron density jus-
tifies, a posteriori, our calculations, which were done at
much higher density than in [1].

The most important result of the computer simulations
is the temperature trend of the line width and shift, which
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Fig. 7. Same as in Figure 5 but for the 493.4 nm Ba II line.

is quite different from the one predicted by the model used
in [1]. As expected, the results of Modified Semiempirical
Formulas [4,5] show the same trend as shown in [1]. The
origin of both approaches [1,4,5] is the same and starts
from reference [2].

The simulation results corresponding to the calcula-
tions with joined effect of ions and electrons are compared
with other theoretical results considering only electron col-
lisions, see Figure 5. For the studied cases, the ionic fields
are responsible for a little less than 10% of the total width
and shift.

Likewise, computer simulations were carried on for the
493.4 nm Ba II line. The level structure in this case is sim-
ilar to that of the Sr II. The results are shown in Figure 7
together with experimental data and results of the Mod-
ified Semiempirical Formula. The observed trends, both
for the width and the shift, are similar to those found for
the Sr II.

4 Conclusions

The aim of this work is not to supply accurate values
of Sr+ and Ba+ line widths and shifts for quantitative
comparison with experiment. This would require to use
Molecular Dynamics simulations of interacting particles
with consideration of the emitter charge. It is not expected
however that these results would differ qualitatively from
those presented here.

The most important result of this work is an indica-
tion that strong collisions dominate Stark broadening at
very low electron temperatures and therefore the theoret-
ical approaches based on weak collisions assumption, see
e.g. [2], cannot be applied in this temperature region. Con-
sequently the temperature trend of Stark widths and shifts
changes from 1/

√
T used at elevated temperatures to an

increasing trend with temperature, which is character-
istic of strong collision cases [6]. Our results in Figures 5, 6

and 7 indicate that width and shift have a increasing de-
pendence with an increase of the temperature and suggest
that Stark broadening in ultracold plasmas at relatively
low electron densities Ne < 1016 m−3 is negligible. In fa-
vor of this conclusion speaks also an experimental fact:
the generation and confinement of ultracold plasmas at
very low temperatures would be followed by a huge drift
of the optimal laser→plasma interaction wavelength if the
Stark shift do no comply temperature dependence of the
simulation results, see Figures 5 to 7. Namely, the wave-
length of Sr II and Ba II resonance lines are used for laser
trapping and cooling of strontium and barium ultracold
plasmas. To the authors knowledge such systematic and
large shifts of the optimum pumping laser wavelength are
not detected even for very low temperatures.
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